4.4 Article

Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase

期刊

BIOCHEMISTRY
卷 40, 期 16, 页码 5056-5064

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi002801k

关键词

-

资金

  1. NIGMS NIH HHS [GM20524, GM24908, F32 GM020524-01, F32 GM020524] Funding Source: Medline

向作者/读者索取更多资源

Cobalamin-dependent methionine synthase (MetH) catalyzes the methylation of homocysteine using methyltetrahydrofolate as the methyl donor. The cobalamin cofactor serves as an intermediate carrier of the methyl. group from methyltetrahydrofolate to homocysteine. In the two half-reactions that comprise turnover for MetH, the cobalamin is alternatively methylated by methyltetrahydrofolate and demethylated by homocysteine to form methionine. Upon binding to the protein, the usual dimethylbenzimidazole Ligand is replaced by the imidazole side chain of His759 [Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G., and Ludwig, M. L. (1994) Science 266, 1669-1674]. Despite the ligand replacement that accompanies binding of cobalamin to the holo-MetH protein, a MetH(2-649) fragment of methionine synthase that contains the regions that bind homocysteine and methyltetrahydrofolate utilizes exogenously supplied cobalamin in methyl transfer reactions akin to those of the catalytic cycle. However, the interactions of MetH(2-649) with endogenous cobalamin are first order in cobalamin, while the half-reactions catalyzed by the holoenzyme are zero order in cobalamin, so rate constants for reactions of bound and exogenous cobalamins cannot be compared. In this paper, we investigate the catalytic rate enhancements generated by binding cobalamin to MetH after dividing the protein in half and reacting MetH(2-649) with a second fragment, MetH(649-1227), that harbors the cobalamin cofactor. The second-order rate constant for demethylation of methylcobalamin by Hey is elevated BO-fold and that for methylation of cob(I)alamin is elevated 120-fold. Thus, binding of cobalamin to MetH is essential for efficient catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据