4.8 Article

Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse

期刊

NATURE
卷 410, 期 6832, 页码 1057-1064

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/35074025

关键词

-

向作者/读者索取更多资源

The development of chemical synapses is regulated by interactions between pre- and postsynaptic cells. At the vertebrate skeletal neuromuscular junction, the organization of an acetylcholine receptor (AChR)-rich postsynaptic apparatus has been well studied. Much evidence suggests that the nerve-derived protein agrin activates muscle-specific kinase (MuSK) to cluster AChRs through the synapse-specific cytoplasmic protein rapsyn. But how postsynaptic differentiation is initiated, or why most synapses are restricted to an 'end-plate band' in the middle of the muscle remains unknown. Here we have used genetic methods to address these issues. We report that the initial steps in postsynaptic differentiation and formation of an end-plate band require MuSK and rapsyn, but are not dependent on agrin or the presence of motor axons. In contrast, the subsequent stages of synaptic growth and maintenance require nerve-derived agrin, and a second nerve-derived signal that disperses ectopic postsynaptic apparatus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据