4.4 Article

The ATP synthase: the understood, the uncertain and the unknown

期刊

BIOCHEMICAL SOCIETY TRANSACTIONS
卷 41, 期 -, 页码 1-16

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BST20110773

关键词

adenosine triphosphate (ATP); ATP synthase; bacterium; chloroplast; energy cost; mitochondrion; protonmotive force; rotor; stator

资金

  1. Medical Research Council
  2. Human Frontiers of Science Project via EMEP (European Membrane Protein Consortium) and EDICT (European Drug Initiative in Channels and Transporters)
  3. European Molecular Biology Organization via EMEP (European Membrane Protein Consortium) and EDICT (European Drug Initiative in Channels and Transporters)
  4. European Union via EMEP (European Membrane Protein Consortium) and EDICT (European Drug Initiative in Channels and Transporters)
  5. Medical Research Council [MC_U105663150] Funding Source: researchfish
  6. MRC [MC_U105663150] Funding Source: UKRI

向作者/读者索取更多资源

The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Delta p, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Delta p is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据