4.4 Article

Ab initio quantum chemistry and molecular dynamics simulations studies of LiPF6/poly(ethylene oxide) interactions

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 22, 期 6, 页码 641-654

出版社

WILEY
DOI: 10.1002/jcc.1033.abs

关键词

polymer electrolytes; force field; quantum chemistry; molecular dynamics

向作者/读者索取更多资源

Ab initio and molecular mechanics studies of LiPF6 and the interaction of the salt with the poly(ethylene oxide) (PEO) oligomer dimethylether have been performed. Optimized geometries and energies of Li+/PF6- complexes obtained from quantum chemistry revealed a preference for C-3V symmetry structures for Li+-P separations under 2.8 Angstrom, C-2V symmetry for Li+-P in the range of 2.8-3.3 Angstrom and C-4V symmetry for Li+-P separations larger than 3.3 Angstrom. Electron correlation effects were found to make an insignificant contribution to binding in the Li+/PF6- complex. By contrast, analogous studies of PF6-/PF6- and PF6-/dimethyl ether complexes revealed important contributions of electron correlation to the complex interaction energy. A molecular mechanics force field for simulations of PEO/LiPF6 melts was parameterized to reproduce the geometries and energies of Li+/PF6-, PF6-/PF6-, PF6-/dimethylether complexes. Molecular dynamics simulations of PEO/LiPF6 melts were performed to validate this quantum chemistry-based force field. Accurate reproduction of the increase in solution density with addition of salt was found while the electrical conductivity of PEO/LiPF6 solutions was found to be within an order of magnitude of the experimental values. (C) 2001 John Wiley & Sons, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据