4.3 Review

Dynamic aspects of platelet adhesion under flow

期刊

出版社

WILEY
DOI: 10.1046/j.1440-1681.2001.03468.x

关键词

glycoprotein Ib-IX-V; intracellular signalling; platelet adhesion; von Willebrand factor

向作者/读者索取更多资源

1. Cell-cell and cell-matrix adhesive interactions are critical for a wide range of physiological processes, including embryogenesis, inflammation, immunity and haemostasis. 2. The ability of circulating blood cells, such as platelets and leucocytes, to adhere to sites of vascular injury is complicated by the presence of blood flow, which imposes hydrodynamic forces on adhesion contacts. 3. To overcome this problem, platelets and leucocytes have evolved specific adhesion receptors with unique biomechanical properties that enable these cells to adhere to the vessel wall under flow conditions. 4. Platelet adhesion in the normal circulation appears to be a multiple-step process involving an initial reversible interaction between the platelet adhesion receptor glycoprotein Ib-IX-V and the vascular adhesion protein von Willebrand factor. Once tethered to the vessel wall, platelets form irreversible adhesion contacts through the binding of one or more platelet integrins to specific subendothelial matrix proteins. 5. There is now a wealth of evidence demonstrating that these receptors not only mediate platelet adhesion, but also transduce signals leading to platelet activation. 6. In the present review, we will briefly discuss the current understanding of the specific roles of individual platelet receptors in supporting the haemostatic function of platelets and discuss mechanisms by which these receptors induce platelet activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据