4.6 Article

Biological freezing of human articular chondrocytes

期刊

OSTEOARTHRITIS AND CARTILAGE
卷 9, 期 4, 页码 341-350

出版社

W B SAUNDERS CO LTD
DOI: 10.1053/joca.2000.0394

关键词

chondrocytes; cryopreservation; alginate

向作者/读者索取更多资源

Aim: To preserve viable, metabolically active chondrocytes cultured in alginate beads at -196 degreesC for further use in in vitro and in vivo studies. Methods: Human articular chondrocytes were isolated from femoral condyles within 24 h post mortem. To optimize the biological freezing procedure, the chondrocytes were control-rate frozen in different concentrations of dimethyl sulfoxide (DMSO) in Dulbecco's MEM supplemented with 10% FCS before being thawed and the cell viability was determined by Trypan Blue exclusion test. To investigate the effect of control-rate freezing on chondrocyte metabolism, control-rate frozen chondrocytes in 5% DMSO were thawed and cultured in gelled agarose for 2 weeks. Non-frozen chondrocytes cultured in agarose served as controls. Furthermore, human articular chondrocytes were cultured in 2% alginate beads for 2 weeks after which the beads were incubated with 5% DMSO for 0 h, 2.5 h, 5 h and 10 h and frozen at -196 degreesC. Non-frozen alginate beads containing chondrocytes and incubated with 5% DMSO served as a control. After 2 weeks in culture, chondrocytes in agarose or in alginate were sulfated with 10 mu Ci (SO4)-S-35/ml for 48 h. The total production of aggrecans, and the aggrecan subtypes, were subsequently determined. Results: Five percent DMSO in the culture medium was the optimal condition to control-rate freeze and recover viable and functional isolated chondrocytes. Total aggrecan synthesis of control-rate frozen chondrocytes cultured in gelled agarose was not significantly reduced when compared with control cells. The proportion of aggrecan in the aggregate form of control-rate frozen chondrocytes kept in agarose remained unaltered. Chondrocytes, control-rate frozen in the alginate matrix, showed a 0-30% decrease in total aggrecan synthesis rates in culture when compared with the non-frozen chondrocytes. The optimal pre-incubation time of the alginate beads with 5% DMSO was 5 h, without any change in aggrecan synthesis rates when compared with the control situation. Shorter pre-incubation times resulted in an insufficient diffusion of DMSO into the beads and in cell death. There was no difference in the synthesis of the different aggrecan subtypes between frozen and non-frozen chondrocytes in alginate. Conclusion: Human articular chondrocytes can be stored at -196 degreesC for 24 h without important decreases in their aggrecan synthesis rates when control-rate frozen as a cell suspension in 5% DMSO. Proportions of the aggrecan subtypes (monomers, aggregates) synthesized by chondrocytes cultured in agarose remained unchanged. The control-rate freezing procedure in the alginate beads pre-incubated with 5% DMSO for 5 h produced no decrease in total aggrecan synthesis rates and no change in the synthesized aggrecan subtypes. Further experiments have to confirm the suitability of this freezing method for long-term storage of chondrocytes allowing us to set up a 'chondrocyte' bank far further use in in vitro and in vivo manipulations. (C) 2001 OsteoArthritis Research Society International.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据