4.8 Article

Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in arabidopsis

期刊

PLANT CELL
卷 13, 期 5, 页码 1155-1163

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.13.5.1155

关键词

-

向作者/读者索取更多资源

In Arabidopsis, activation of defense responses by flagellin is triggered by the specific recognition of the most conserved domain of flagellin, represented by the peptide flg22, in a process involving the FLS2 gene, which encodes a leucine-rich repeat serine/threonine protein kinase, We shaw here that the two fls2 mutant alleles, fls2-24 and fls2-17, which were shown previously to confer insensitivity to flg22, also cause impaired flagellin binding. These features are rescued when a functional FLS2 gene is expressed as a transgene in each of the fls2 mutant plants, indicating that FLS2 is necessary for flagellin binding. The point mutation of the fls2-17; allele lies in the kinase domain. A kinase carrying this missense mutation lacked autophosphorylation activity when expressed in Escherichia coli, This indicates that kinase activity is required for binding and probably affects the stability of the flagellin receptor complex. We further show that overexpression of the kinase-associated protein phosphatase (KAPP) in Arabidopsis results in plants that are insensitive to flagellin treatment, and we show reduced flg22 binding in these plants. Furthermore, using the yeast two-hybrid system, we show physical interaction of KAPP with the kinase domain of FLS2. These results suggest that KAPP functions as a negative regulator of the FLS2 signal transduction pathway and that the phosphorylation of FLS2 is necessary for proper binding and signaling of the flagellin receptor complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据