4.6 Article

Endotoxin-induced maturation of MyD88-deficient dendritic cells

期刊

JOURNAL OF IMMUNOLOGY
卷 166, 期 9, 页码 5688-5694

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.166.9.5688

关键词

-

向作者/读者索取更多资源

LPS, a major component of the cell wall of Gram-negative bacteria, can induce a variety of biological responses including cytokine production from macrophages, B cell proliferation, and endotoxin shock. All of them were completely abolished in MyD88-deficient mice, indicating the essential role of MyD88 in LPS signaling. However, MyD88-deficient cells still show activation of NF-kappaB and mitogen-activated protein kinase cascades, although the biological significance of this activation is not clear. In this study, we have examined the effects of LPS on dendritic cells (DCs) from wild-type and several mutant mice. LPS-induced cytokine production from DCs was dependent on MyD88. However, LPS could induce functional maturation of MyD88-deficient DCs, including up-regulation of costimulatory molecules and enhancement of APC activity. MyD88-deficient DCs could not maturate in response to bacterial DNA, the ligand for Toll-like receptor (TLR)9, indicating that MyD88 is differentially required for TLR family signaling. MyD88-dependent and -independent pathways originate at the intracytoplasmic region of TLR4, because both cytokine induction and functional maturation were abolished in DCs from C3H/HeJ mice carrying the point mutation in the region. Finally, in vivo analysis revealed that MyD88-, but not TLR4-, deficient splenic CD11c(+) DCs could up-regulate their costimulatory molecule expression in response to LPS. Collectively, the present study provides the first evidence that the MyD88-independent pathway downstrem of TLR4 can lead to functional DC maturation, which is critical for a link between innate and adaptive immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据