4.6 Article

An in situ X-ray absorption spectroscopy study of InSb electrodes in lithium batteries

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 3, 期 5, 页码 244-251

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S1388-2481(01)00152-7

关键词

lithium batteries; in situ EXAFS; indium-antimony/antimonide; intermetallic

向作者/读者索取更多资源

We present a detailed in situ extended X-ray absorption fine-structure spectroscopy (EXAFS) study of structural and compositional changes in InSb intermetallic electrodes under electrochemical cycling conditions in a lithium battery. Analysis of the EXAFS data shows that Li is inserted into and In is extruded from the zinc-blende-type InSb network during the first discharge from 1.5 to 0.5 V. yielding changing Lix+vIn1-vSb compositions (0 < x 2, 0 < y 1), with a lattice parameter that varies between that of InSb (a = 6.478 Angstrom) and Li3Sb (a = 6.572 Angstrom). The structural features of tetragonal metallic In and lithiated (i.e., In depleted) InSb are evident. The fully recharged electrode, at 1.2 V, has a zinc-blende framework closely resembling InSb. However, 40% of the In remains permanently outside the face-centered-cubic Sb lattice, explaining a loss in capacity after the first discharge. After the second discharge, at 0.51 V, Li has replaced about 80% of the indium in the InSb lattice, while the LixInxSb volume has expanded less than 4% compared to the initial electrode. Finally, as the cell is discharged below 0.51 V, Li reacts with the In metal, forming LiIn. Our results indicate that intermetallic electrodes are promising alternative negative electrodes for Li batteries. (C) 2001 Published by Elsevier Science B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据