4.6 Article

Electronic structure of molecular crystals containing edge dislocations

期刊

JOURNAL OF APPLIED PHYSICS
卷 89, 期 9, 页码 4962-4970

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1359171

关键词

-

向作者/读者索取更多资源

An attempt to model the electronic structure of molecular crystals containing an edge dislocation at the ab initio Hartree-Fock level is performed. The experimentally determined configurations for edge-type dislocations with the Burgers vector [001] in crystalline cyclotrimethylene trinitramine (RDX) and pentaetythritol tetranitrate (PETN) are theoretically simulated. It is shown that a shear stress, induced by the dislocations, produces local electronic states in the fundamental band gap of the crystal. These states are mainly formed by molecular orbitals of critical bonds (which are the N-NO2 group in RDX and the O-NO2 group in PETN) responsible for the stability of the materials. Optical absorption attributed to these electronic states is predicted and compared to the available experimental data. Properties of the defective solids are compared with those of the perfect crystals. Correlation of the electronic structure and sensitivity of the materials to initiation of a chemical reaction as well as some practical applications of the obtained results are discussed. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据