4.7 Article

Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation-The key step of inflammation

期刊

BIOCHEMICAL PHARMACOLOGY
卷 82, 期 3, 页码 278-286

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2011.05.003

关键词

Compound K; Ginsenoside Rb1; Interleukin-1 receptor-associated kinase-1

资金

  1. Korea Food & Drug Administration [09172KFDA996]

向作者/读者索取更多资源

In the preliminary study, ginsenoside Rb1, a main constituent of the root of Panax ginseng (family Araliaceae), and its metabolite compound K inhibited a key factor of inflammation, nuclear transcription factor kappa B (NF-kappa B) activation, in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. When ginsenoside Rb1 or compound K were orally administered to 2,4,6-trinitrobenzene sulfuric acid (TNBS)-induced colitic mice, these agents inhibited colon shortening, macroscopic score, and colonic thickening. Furthermore, treatment with ginsenoside Rb1 or compound K at 20 mg/kg inhibited colonic myeloperoxidase activity by 84% and 88%, respectively, as compared with TNBS alone (p < 0.05). and also potently inhibited the expression of tumor necrosis factor-a, interleukin (IL)-1 beta and IL-6, but increased the expression of IL-10. Both ginsenoside Rb1 and compound K blocked the TNBS-induced expressions of COX-2 and iNOS and the activation of NF-kappa B in mice. When ginsenoside Rb1 or compound K was treated in LPS-induced murine peritoneal macrophages, these agents potently inhibited the expression of the proinflammatory cytokines. Ginsenoside Rb1 and compound K also significantly inhibited the activation of interleukin-1 receptor-associated kinase-1 (IRAK-1), IKK-beta, NF-kappa B, and MAP kinases (ERK, JNK, and p38); however, interaction between LPS and Toll-like receptor-4, IRAK-4 activation and IRAK-2 activation were unaffected. Furthermore, compound K inhibited the production of proinflammatory cytokines more potently than did those of ginsenoside Rb1. On the basis of these findings, ginsenosides, particularly compounds K, could be used to treat inflammatory diseases, such as colitis, by targeting IRAK-1 activation. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据