4.7 Article

Design and in vitro characterization of PAC1/VPAC1-selective agonists with potent neuroprotective effects

期刊

BIOCHEMICAL PHARMACOLOGY
卷 81, 期 4, 页码 552-561

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2010.11.015

关键词

PACAP; Structure-activity; PAC1/VPAC1 selectivity; Neuroprotection; Parkinson's disease

资金

  1. Canadian Institutes of Health Research
  2. Heart and Stroke Foundation of Canada
  3. Foundation Armand-Frappier

向作者/读者索取更多资源

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide that exerts a large array of actions in the central nervous system and periphery. Through the activation of PAC1 and VPAC1. PACAP is able to exert neuroprotective, as well as anti-inflammatory effects, two phenomena involved in the pathogenesis and the progression of neurodegenerative diseases. The aim of the current study was to provide insights into the molecular arrangement of the amino terminus of PACAP and to develop new potent and selective PAC1/VPAC1 agonists promoting neuronal survival. We have synthesized a series of PACAP derivatives and measured their binding affinity and their ability to induce intracellular calcium mobilization for each receptor, i.e. PAC1, VPAC1, and VPAC2. Ultimately, analogs with an improved pharmacological profile were evaluated in an in vitro model of neuronal loss. Results showed that introduction of a hydroxyproline or an alanine moiety, respectively, at position 2 or 7 generated derivatives without significant VPAC2 agonistic activity. Moreover, the structure-activity relationship study suggests the presence of common (Asx-turn like) and distinct (different N-capping type) secondary structures that might be responsible for receptor recognition, selectivity and activation. Finally, evaluation of the neuroprotective activity of [Ala(7)]PACAP27 and [Hyp(2)]PACAP27 demonstrated their ability to protect potently human dopaminergic SH-SY5Y neuroblasts against the toxicity of MPP+, in pre- and co-treatment experiments. These new pharmacological and structural data should prove useful for the rational design of PACAP-derived compounds that could be putative therapeutic agents for the treatment of neurodegenerative diseases. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据