4.7 Article

Structural constraints and the importance of lipophilicity for the mitochondrial uncoupling activity of naturally occurring caffeic acid esters with potential for the treatment of insulin resistance

期刊

BIOCHEMICAL PHARMACOLOGY
卷 79, 期 3, 页码 444-454

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2009.08.026

关键词

Naturally occurring phenolic compounds; Mitochondrial energy transduction; Uncoupling of oxidative phosphorylation; Adenosine monophosphate (AMP)-activated protein kinase signaling pathway; Glucose uptake; Insulin resistance

资金

  1. Canadian Institutes of Health Research

向作者/读者索取更多资源

Caffeic acid phenethyl ester (CAPE) has recently been shown to potently stimulate glucose uptake in cultured skeletal muscle cells through the AMPK pathway and therefore to have anti-diabetic potential. We report here that CAPE increases glucose uptake in C2C12 muscle cells by 225 +/- 21%at 50 mu M, and that activation of AMPK is a consequence of the metabolic stress resulting from an uncoupling-type disruption of mitochondrial function (complete uncoupling at 50 mu M). We also observe that the therapeutic potential of CAPE is offset by its high potential for toxicity. The purpose of this study was therefore to identify other active caffeic acid derivatives, evaluate their ratio of activity to toxicity, and elucidate their structure-activity relationship. Twenty naturally occurring derivatives were tested for glucose-uptake stimulating activity in C2C12 cells following 18 h of treatment and for uncoupling activity in isolated rat liver mitochondria. Cytotoxicity was assessed in C2C12 cells by the release of lactate dehydrogenase over 18 h. In addition to CAPE, four compounds were identified to be active, both stimulating glucose uptake and uncoupling isolated mitochondria. Activity required that the caffeic acid moiety be intact and that the compound not contain a strongly ionized group. Both activity and toxicity were found to be well-correlated to predicted lipophilicity. However, two compounds exhibited little to no toxicity while still stimulating glucose uptake by 65-72%. These results support a therapeutic potential for this family of compounds and provide the framework for the design of alternatives to Metformin with an optimized balance of safety and activity. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据