4.7 Article

BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway

期刊

BIOCHEMICAL PHARMACOLOGY
卷 80, 期 8, 页码 1160-1169

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2010.07.009

关键词

Apoptosis; Autophagy; BNIP3; Hypoxia; Cancer cells

资金

  1. FRIA (Fonds pour la formation a la Recherche dans l'Industrie et dans l'Agriculture)

向作者/读者索取更多资源

Tumor hypoxia is a common characteristic of most solid tumors and is correlated with poor prognosis for patients partly because hypoxia promotes resistance to cancer therapy. Hypoxia selects cancer cells that are resistant to apoptosis and allows the onset of mechanisms that promote cancer cells survival including autophagy. Previously, we showed that human hepatoma HepG2 cells were protected under hypoxia against the etoposide-induced apoptosis. In this study, respective putative contribution of autophagy and BNIP3 in the protection conferred by hypoxia against the etoposide-induced apoptosis was investigated. We report that autophagy is induced by etoposide, a process that is not affected by hypoxic conditions. Using Atg5 siRNA, we show that etoposide-induced autophagy promotes apoptotic cell death under normoxia but not under hypoxia. Then, we investigated whether the hypoxia-induced protein BNIP3 could explain the different effect of autophagy on cell death under hypoxia or normoxia. We show that the silencing of BNIP3 does not affect autophagy whatever the pO(2) but participates in the protective effect of hypoxia against etoposide-induced apoptosis. Together, these results suggest that autophagy might be involved in etoposide-induced cell death only under normoxia and that BNIP3 is a major effector of the protective mechanism conferred by hypoxia to protect cancer cells against etoposide-induced apoptotic cell death. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据