4.7 Article

Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation

期刊

BIOCHEMICAL PHARMACOLOGY
卷 78, 期 9, 页码 1242-1251

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2009.06.097

关键词

Microglia; Astrocytes; mTOR; NOS2; COX; Cytokines

资金

  1. National Multiple Sclerosis Society
  2. Fondi di Ateneo to CDR
  3. Novartis Pharmaceutical

向作者/读者索取更多资源

Neuroinflammation plays a prominent role in the pathophysiology of several neurodegenerative disorders, including Multiple Sclerosis. Reactive microglial cells are always found in areas of active demyelination as well as in normal-appearing white matter. Microglia contribute to initiating and maintaining brain inflammation, and once activated release pro-inflammatory mediators potentially cytotoxic, like nitric oxide (NO). It is now evident that the mTOR signaling pathway regulates different functions in the innate immune system, contributing to macrophage activation. More recently, mTOR has been found to enhance the survival of EOC2 microglia during oxygen-glucose deprivation and increase NO synthase 2 (NOS2) expression during hypoxia in BV2 microglial cell line, thus suggesting an involvement in microglial pro-inflammatory activation. In the present study, we detected mTOR activation in response to two different stimuli, namely LPS and a mixture of cytokines, in primary cultures of rat cortical microglia. Moreover, mTOR inhibitors reduced NOS activity and NOS2 expression induced by cytokines, but not those induced by LPS. The mTOR inhibitor RAD001, in combination with cytokines, also reduced microglial proliferation and the intracellular levels of cyclooxygenase. Under basal conditions mTOR inhibition significantly reduced microglial viability. Interestingly, mTOR inhibitors did not display any relevant effect on astrocyte NOS2 activity or cell viability. In conclusion, mTOR selectively controls microglial activation in response to pro-inflammatory cytokines and appears to play a crucial role in microglial viability; thus these drugs may be a useful pharmacological too] to reduce neuroinflammation. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据