4.7 Article

Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep

期刊

BIOCHEMICAL PHARMACOLOGY
卷 76, 期 6, 页码 773-783

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2008.07.002

关键词

flubendazole; anthelmintics; biotransformation; microsomes; carbonyl reductase; sheep

资金

  1. CONICET [PIP 6489]
  2. Agencia Nacional de Promocion Cientifica y Tecnica (ANPCyT) [PICT 1881]

向作者/读者索取更多资源

Flubendazole (FLBZ) is a broad-spectrum benzimidazole anthelmintic compound used in pigs, poultry and humans. Its potential for parasite control in ruminant species is under investigation. The objective of the work described here was to identify the main enzymatic pathways involved in the hepatic and extra-hepatic biotransformation of FLBZ in sheep. Microsomal and cytosolic fractions obtained from sheep liver and duodenal mucosa metabolised FLBZ into a reduced FLBZ metabolite (red-FLBZ). The keto-reduction of FLBZ led to the prevalent (similar to 98%) stereospecific formation of one enantiomeric form of red-FLBZ. The amounts of red-FLBZ formed in liver subcellular fractions were 3-4-fold higher (P < 0.05) compared to those observed in duodenal subcellular fractions. This observation correlates with the higher (P < 0.05) carbonyl reductase (CBR) activities measured in the liver compared to the duodenal mucosa. No metabolic conversion was observed following FLBZ or red-FLBZ incubation with sheep ruminal fluid. Sheep liver microsomes failed to convert red-FLBZ into FLBZ. However, this metabolic reaction occurred in liver microsomes prepared from phenobarbital-induced rats, which may indicate a cytochrome P450-mediated oxidation of red-FLBZ. A NADPH-dependent CBR is proposed as the main enzymatic system involved in the keto-reduction of FLBZ in sheep. CBR substrates such as menadione and mebendazole (a non-fluoride analogue of FLBZ), inhibited this liver microsomal enzymatic reaction, which may confirm the involvement of a CBR enzyme in FLBZ metabolism in sheep. This research is a further contribution to the understanding of the metabolic fate of a promissory alternative compound for antiparasitic control in ruminant species. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据