4.7 Article

Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9

期刊

BIOCHEMICAL PHARMACOLOGY
卷 76, 期 3, 页码 416-425

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2008.05.007

关键词

UGT1A3; UGT1A9; flavonoids; glucuronidation; monoglucuronide

向作者/读者索取更多资源

Flavonoids are highlighted for their potential roles in the prevention of oxidative stress-associated diseases. Their metabolisms in vivo, such as glucuronidation, are the key points to determine their health beneficial properties. In this paper, we tested the glucuronidation of nineteen flavonoids by both recombinant human UGT1A3 and UGT1A9. Eleven compounds could be catalyzed by both enzymes. In general, both enzymes showed moderate to high catalyzing activity to most flavonoid aglycones, while the catalyzing efficiency changed with structures. Each flavonoid produced more than one monoglucuronide with no diglucuronide detected by liquid chromatography-mass spectrometry (LC-MS). Enzymatic kinetic analysis indicated that the catalyzing efficiency (V-max/K-m) of UGT1A9 was higher than that of UGT1A3, suggesting its important role in flavonoid glucuronidation. Both human UGT1A3 and UGT1A9 preferred flavonoid aglycone to flavonoid glycoside, and their metabolism to arabinoside was stronger than to other glycosides. Of the flavonoids studied, it is the first time to report isorhamnetin, morin, silybin, kaempferol, daidzein, quercetin-3',4'-OCHO-, quercetin xylopyranoside and avicularin as substrates of UGT1A3. Apigenin, morin, daidzein, quercetin-3',4'-OCHO-, quercetin xylopyranoside and avicularin were the newly reported substrates of UGT1A9. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据