4.7 Article

Quantification of insect nitrogen utilization by the venus fly trap Dionaea muscipula catching prey with highly variable isotope signatures

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 52, 期 358, 页码 1041-1049

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jexbot/52.358.1041

关键词

Venus fly trap; insect capture; isotope signature; nitrogen; growth

向作者/读者索取更多资源

Dionaea is a highly specialized carnivorous plant species with a unique mechanism for insect capture. The leaf is converted into an osmotically driven trap that closes when an insect triggers sensory trichomes. This study investigates the significance of insect capture for growth of Dionaea at different successional stages after a fire, under conditions where the prey is highly variable in its isotope signature. The contribution of insect-derived nitrogen (N) was estimated using the natural abundance of N-15. In contrast to previous N-15 studies On carnivorous plants, the problem emerges that delta N-15 values of prey insects ranged between -4.47 parts per thousand (grasshoppers) and +7.21 parts per thousand (ants), a range that exceeds the delta N-15 values of non carnivorous reference plants (-4.2 parts per thousand) and soils (+3 parts per thousand). Thus, the isotope-mixing model used by Shearer and Kohl to estimate the amount of insect-derived N is not applicable. In a novel approach, the relationships of delta N-15 values of different organs with delta N-15 Of trapping leaves were used to estimate N partitioning within the plant. It is estimated that soon after fire approximately 75% of the nitrogen is obtained from insects, regardless of plant size or developmental stage. The estimates are verified by calculating the average isotope signatures of insects from an isotope mass balance and comparing this with the average measured delta N-15 values of insects. It appears that for Dionaea to survive and reach the flowering stage, seedlings must first reach the 6th-leaf rosette stage, in which trap surface area nearly doubles and facilitates the capture of large insects. Large amounts of nitrogen thus made available to plants may facilitate an enhanced growth rate and the progressive production of additional large traps. Dionaea reaches a maximum abundance after fire when growth of the competing vegetation is suppressed. About 10 years after fire, when grasses and shrubs recover, Dionaea becomes overtopped by other species. This would not only reduce carbon assimilation but also the probability of catching larger prey. The amount of insect-derived nitrogen decreases to 46%, and Dionaea becomes increasingly dependent on N-supply from the soil. Competition for both light and N may cause the near disappearance of Dionaea in older stages of the fire succession.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据