4.6 Article

Lysyl Oxidase Activity Is Required for Ordered Collagen Fibrillogenesis by Tendon Cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 290, 期 26, 页码 16440-16450

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.641670

关键词

collagen; electron microscopy (EM); fibril; lysyl oxidase; tendon; Ehlers-Danlos Syndrome; collagen cross-linking; tendon construct; -aminoproprionitrile (BAPN)

资金

  1. National Institutes of Health [AR037318]
  2. Wellcome Trust
  3. Nordea Foundation
  4. University of Copenhagen, Department of Health Sciences, Academy of Muscle Biology, Exercise, and Health Research

向作者/读者索取更多资源

Background: Lysyl oxidase catalyzes collagen cross-link formation, which is essential for mechanically strong collagen fibrils. Results: LOX inhibition stops early mechanical development of tendon constructs and leads to irregularly shaped collagen fibrils. Conclusion: Collagen cross-linking is essential for successful fibrillogenesis and regulates fibril shape. Significance: LOX activity is required in the control of collagen fibril architecture by a mechanism that remains to be explained. Lysyl oxidases (LOXs) are a family of copper-dependent oxido-deaminases that can modify the side chain of lysyl residues in collagen and elastin, thereby leading to the spontaneous formation of non-reducible aldehyde-derived interpolypeptide chain cross-links. The consequences of LOX inhibition in producing lathyrism are well documented, but the consequences on collagen fibril formation are less clear. Here we used -aminoproprionitrile (BAPN) to inhibit LOX in tendon-like constructs (prepared from human tenocytes), which are an experimental model of cell-mediated collagen fibril formation. The improvement in structure and strength seen with time in control constructs was absent in constructs treated with BAPN. As expected, BAPN inhibited the formation of aldimine-derived cross-links in collagen, and the constructs were mechanically weak. However, an unexpected finding was that BAPN treatment led to structurally abnormal collagen fibrils with irregular profiles and widely dispersed diameters. Of special interest, the abnormal fibril profiles resembled those seen in some Ehlers-Danlos Syndrome phenotypes. Importantly, the total collagen content developed normally, and there was no difference in COL1A1 gene expression. Collagen type V, decorin, fibromodulin, and tenascin-X proteins were unaffected by the cross-link inhibition, suggesting that LOX regulates fibrillogenesis independently of these molecules. Collectively, the data show the importance of LOX for the mechanical development of early collagenous tissues and that LOX is essential for correct collagen fibril shape formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据