4.5 Article

Mechanisms of tryptophan fluorescence shifts in proteins

期刊

BIOPHYSICAL JOURNAL
卷 80, 期 5, 页码 2093-2109

出版社

CELL PRESS
DOI: 10.1016/S0006-3495(01)76183-8

关键词

-

向作者/读者索取更多资源

Tryptophan fluorescence wavelength is widely used as a tool to monitor changes in proteins and to make inferences regarding local structure and dynamics. We have predicted the fluorescence wavelengths of 19 tryptophans in 16 proteins, starting with crystal structures and using a hybrid quantum mechanical-classical molecular dynamics method with the assumption that only electrostatic interactions of the tryptophan ring electron density with the surrounding protein and solvent affect the transition energy. With only one adjustable parameter, the scaling of the quantum mechanical atomic charges as seen by the protein/solvent environment, the mean absolute deviation between predicted and observed fluorescence maximum wavelength is 6 nm. The modeling of electrostatic interactions, including hydration, in proteins is vital to understanding function and structure, and this study helps to assess the effectiveness of current electrostatic models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据