4.6 Article

From Protease to Decarboxylase THE MOLECULAR METAMORPHOSIS OF PHOSPHATIDYLSERINE DECARBOXYLASE

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 290, 期 17, 页码 10972-10980

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.642413

关键词

-

资金

  1. National Institutes of Health [GM104485, AI097218, AI09486]
  2. Bill and Melinda Gates Foundation [OPP1086229, OPP1069779, 1021571]
  3. Bill and Melinda Gates Foundation [OPP1069779, OPP1086229] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

Phosphatidylserine decarboxylase (PSDs) play a central role in the synthesis of phosphatidylethanolamine in numerous species of prokaryotes and eukaryotes. PSDs are unusual decarboxylase containing a pyruvoyl prosthetic group within the active site. The covalently attached pyruvoyl moiety is formed in a concerted reaction when the PSD proenzyme undergoes an endoproteolytic cleavage into a large beta-subunit, and a smaller alpha-subunit, which harbors the prosthetic group at its N terminus. The mechanism of PSD proenzyme cleavage has long been unclear. Using a coupled in vitro transcription/translation system with the soluble Plasmodium knowlesi enzyme (PkPSD), we demonstrate that the post-translational processing is inhibited by the serine protease inhibitor, phenylmethylsulfonyl fluoride. Comparison of PSD sequences across multiple phyla reveals a uniquely conserved aspartic acid within an FFXRX6RX12PXD motif, two uniquely conserved histidine residues within a PXXYHXXHXP motif, and a uniquely conserved serine residue within a GS(S/T) motif, suggesting that PSDs belong to the D-H-S serine protease family. The function of the conserved D-H-S residues was probed using site-directed mutagenesis of PkPSD. The results from these mutagenesis experiments reveal that Asp-139, His-198, and Ser-308 are all essential for endoproteolytic processing of PkPSD, which occurs in cis. In addition, within the GS(S/T) motif found in all PSDs, the Gly-307 residue is also essential, but the Ser/Thr-309 is non-essential. These results define the mechanism whereby PSDs begin their biochemical existence as proteases that execute one autoendoproteolytic cleavage reaction to give rise to a mature PSD harboring a pyruvoyl prosthetic group.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据