4.5 Article

Substrate binding disrupts dimerization and induces nucleotide exchange of the chloroplast GTPase Toc33

期刊

BIOCHEMICAL JOURNAL
卷 436, 期 -, 页码 313-319

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20110246

关键词

dimeric GTPase; GDP-dissociation-inhibitor function (GDI function); G-protein; protein translocation; substrate-based regulation

资金

  1. Deutsche Forschungsgemeinschaft [SFB-807, P17]
  2. Center of Excellence 'Macromolecular Complexes' Frankfurt
  3. Volkswagenstiftung
  4. interdisciplinary Ph.D. programme 'Molecular Machines: Mechanisms and Functional Interconnections' of the Land Baden-Wurttemberg

向作者/读者索取更多资源

GTPases act as molecular switches to control many cellular processes, including signalling, protein translation and targeting. Switch activity can be regulated by external effector proteins or intrinsic properties, such as dimerization. The recognition and translocation of pre-proteins into chloroplasts [via the TOC/TIC (translocator at the outer envelope membrane of chloroplasts/inner envelope membrane of chloroplasts)] is controlled by two homologous receptor GTPases, Toc33 and Toc159, whose reversible dimerization is proposed to regulate translocation of incoming proteins in a GTP-dependent manner. Toc33 is a homodimerizing GTPase. Functional analysis suggests that homodimerization is a key step in the translocation process, the molecular functions of which, as well as the elements regulating this event, are largely unknown. In the present study, we show that homodimerization reduces the rate of nucleotide exchange, which is consistent with the observed orientation of the monomers in the crystal structure. Pre-protein binding induces a dissociation of the Toc33 homodimer and results in the exchange of GDP for GTP. Thus homodimerization does not serve to activate the GTPase activity as discussed many times previously, but to control the nucleotide-loading state. We discuss this novel regulatory mode and its impact on the current models of protein import into the chloroplast.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据