4.5 Article

Reactive oxygen species derived form Nox4 mediate BMP2 gene transcription and osteoblast differentiation

期刊

BIOCHEMICAL JOURNAL
卷 433, 期 -, 页码 393-402

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20100357

关键词

bone morphogenetic protein-2 (BMP-2); bone morphogenetic protein-2 gene autoregulation; bone morphogenetic protein-2 signalling; osteoblast differentiation; reactive oxygen species

资金

  1. National Institutes of Health [R01 AR52425, R01 DK50190]
  2. VA Research Service Merit Review
  3. Department of Veterans Affairs
  4. Juvenile Diabetes Research Foundation [1-2008-185]

向作者/读者索取更多资源

BMP-2 (bone morphogenetic protein-2) promotes differentiation of osteoblast precursor cells to mature osteoblasts that form healthy bone. In the present study, we demonstrate a novel mechanism of BMP-2-induced osteoblast differentiation. The antioxidant NAC (N-acetyl-L-cysteine) and the flavoprotein enzyme NAD(P)H oxidase inhibitor DPI (diphenyleneiodonium) prevented BMP-2-stimulated alkaline phosphatase expression and mineralized bone nodule formation in mouse 2T3 pre-osteoblasts. BMP-2 elicited a rapid generation of ROS (reactive oxygen species) concomitant with increased activation of NAD(P)H oxidase. NAC and DPI inhibited BMP-2-induced ROS production and NAD(P)H oxidase activity respectively. NAD(P)H oxidases display structurally similar catalytic subunits (Nox1-5) with differential expression in various cells. We demonstrate that 2T3 pre-osteoblasts predominantly express the Nox4 isotype of NAD(P)H oxidase. To extend this finding, we tested the functional effects of Nox4. Adenovirus-mediated expression of dominant-negative Nox4 inhibited BMP-2-induced alkaline phosphatase expression. BMP-2 promotes expression of BMP-2 for maintenance of the osteoblast phenotype. NAC and DPI significantly blocked BMP-2-stimulated expression of BMP2 mRNA and protein due to a decrease in BMP2 gene transcription. Dominant-negative Nox4 also mimicked this effect of NAC and DPI. Our results provide the first evidence for a new signalling pathway linking BMP-2-stimulated Nox4-derived physiological ROS to BMP-2 expression and osteoblast differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据