4.7 Article

The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway

期刊

BRITISH JOURNAL OF CANCER
卷 84, 期 9, 页码 1272-1279

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1054/bjoc.2001.1786

关键词

bleomycin; deglyco-bleomycin-A(2); apoptosis; mitotic cell death; electroporation; electrochemotherapy

类别

向作者/读者索取更多资源

Bleomycin is a cytotoxic antibiotic that generates DNA double-strand breaks (DSB) and DNA single-strand breaks (SSB). It is possible to introduce known quantities of bleomycin molecules into cells. Low amounts kill the cells by a slow process termed mitotic cell death, while high amounts produce a fast process that has been termed pseudoapoptosis. We previously showed that these types of cell death are a direct consequence of the DSB generated by bleomycin. Here, we use deglyco-bleomycin, a bleomycin derivative lacking the carbohydrate moiety. Although this molecule performs the same nucleophilic attacks on DNA as bleomycin, we show that deglyco-bleomycin is at least 100 times less toxic to Chinese hamster fibroblasts than bleomycin. In fact, deglyco-bleomycin treatment results in apoptosis induction. In contrast, however, deglyco-bleomycin was found to generate almost exclusively SSB. Our results suggest that more than 150 000 SSB per cell are required to trigger apoptosis in Chinese hamster fibroblasts and that SSB are 300 times less toxic than DSB. Taken together with previous studies on bleomycin, our data demonstrates that cells can die by apoptosis, mitotic cell death, or pseudoapoptosis, depending on the number of DNA breaks and on the ratio of SSB to DSB. (C) 2001 Cancer Research Campaign.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据