4.5 Article

Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain

期刊

BIOCHEMICAL JOURNAL
卷 430, 期 -, 页码 425-437

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20100609

关键词

anaplastic large-cell lymphoma (ALCL); anaplastic lymphoma kinase (ALK); insulin receptor kinase (IRK); neuroblastoma; receptor tyrosine kinase (RTK)

向作者/读者索取更多资源

ALK (anaplastic lymphoma kinase) is an RTK (receptor tyrosine kinase) of the IRK (insulin receptor kinase) superfamily, which share an YXXXYY autophosphorylation motif within their A-loops (activation loops). A common activation and regulatory mechanism is believed to exist for members of this superfamily typified by IRK and IGF1RK (insulin-like growth factor receptor kinase-1). Chromosomal translocations involving ALK were first identified in anaplastic large-cell lymphoma, a subtype of non-Hodgkin's lymphoma, where aberrant fusion of the ALK kinase domain with the NPM (nucleophosmin) dimerization domain results in autophosphosphorylation and ligand-independent activation. Activating mutations within the full-length ALK kinase domain, most commonly R1275Q and F1174L, which play a major role in neuroblastoma, were recently identified. To provide a structural framework for understanding these mutations and to guide structure-assisted drug discovery efforts, the X-ray crystal structure of the unphosphorylated ALK catalytic domain was determined in the apo, ADP- and staurosporine-bound forms. The structures reveal a partially inactive protein kinase conformation distinct from, and lacking, many of the negative regulatory features observed in inactive IGF1RK/IRK structures in their unphosphorylated forms. The A-loop adopts an inhibitory pose where a short proximal A-loop helix (alpha AL) packs against the alpha C helix and a novel N-terminal beta-turn motif, whereas the distal portion obstructs part of the predicted peptide-binding region. The structure helps explain the reported unique peptide substrate specificity and the importance of phosphorylation of the first A-loop Tyr(1278) for kinase activity and NPM-ALK transforming potential. A single amino acid difference in the ALK substrate peptide binding P-1 site (where the P-site is the phosphoacceptor site) was identified that, in conjunction with A-loop sequence variation including the RAS (Arg-Ala-Ser)-motif, rationalizes the difference in the A-loop tyrosine autophosphorylation preference between ALK and IGF1RK/IRK. Enzymatic analysis of recombinant R1275Q and F1174L ALK mutant catalytic domains confirms the enhanced activity and transforming potential of these mutants. The transforming ability of the full-length ALK mutants in soft agar colony growth assays corroborates these findings. The availability of a three-dimensional structure for ALK will facilitate future structure-function and rational drug design efforts targeting this receptor tyrosine kinase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据