4.7 Article

Molecular evolution in collapsing prestellar cores

期刊

ASTROPHYSICAL JOURNAL
卷 552, 期 2, 页码 639-653

出版社

IOP PUBLISHING LTD
DOI: 10.1086/320551

关键词

ISM : clouds; ISM : individual (L1544); ISM : molecules; stars : formation

向作者/读者索取更多资源

We have investigated the evolution and distribution of molecules in collapsing prestellar cores via numerical chemical models, adopting the Larson-Penston solution and its delayed analogs to study collapse. Molecular abundances and distributions in a collapsing core are determined by the balance among the dynamical, chemical, and adsorption timescales. When the central density n(H) of a prestellar core with the Larson-Penston flow rises to 3 x 10(6) cm(-3), the CCS and CO column densities are calculated to show central holes of radius 7000 and 4000 AU, respectively, while the column density of N2H+ is centrally peaked. These predictions are consistent with observations of L1544. If the dynamical timescale of the core is larger than that of the Larson-Penston solution owing to magnetic fields, rotation, or turbulence, the column densities of CO and CCS are smaller, and their holes are larger than in the Larson-Penston core with the same central gas density. On the other hand, N2H+ and NH3 are more abundant in the more slowly collapsing core. Therefore, molecular distributions can probe the collapse timescale of prestellar cores. Deuterium fractionation has also been studied via numerical calculations. The deuterium fraction in molecules increases as a core evolves and molecular depletion onto grains proceeds. When the central density of the core is n(H) = 3 x 10(6) cm(-3), the ratio DCO+/HCO+ at the center is in the range 0.06-0.27, depending on the collapse timescale and adsorption energy; this range is in reasonable agreement with the observed value in L1544.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据