4.6 Article

Haptotactic migration induced by midkine -: Involvement of protein-tyrosine phosphatase ξ, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 19, 页码 15868-15875

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M005911200

关键词

-

向作者/读者索取更多资源

Midkine, a heparin-binding growth factor, plays a critical role in cell migration causing suppression of neointima formation in midkine-deficient mice. Here we have determined the molecules essential for midkine-induced migration. Midkine induced haptotaxis of osteoblast-like cells, which was abrogated by the soluble form of midkine or pleiotrophin, a midkine-homologous protein. Chondroitin sulfate B, E, chondroitinase ABC, B, and orthovanadate, an inhibitor of protein-tyrosine phosphatase, suppressed the migration. Supporting these data, the cells examined expressed PTP zeta, a receptor-type protein-tyrosine phosphatase that exhibits high affinity to both midkine and pleiotrophin and harbors chondroitin sulfate chains. Furthermore, strong synergism between midkine and platelet-derived growth factor in migration was detected. The use of specific inhibitors demonstrated that mitogen-activated protein (MAP) kinase and protein-tyrosine phosphatase were involved in midkine-induced haptotaxis but not PDGF-induced chemotaxis, whereas phosphatidylinositol 3 (PI3)-kinase and protein kinase C were involved in both functions. Midkine activated both PI3-kinase and MAP kinases, the latter activation was blocked by a PI3-kinase inhibitor. Midkine further recruited PTP zeta and PI3-kinase. These results indicate that PTP zeta and concerted signaling involving PI3-kinase and MAP kinase are required for midkine-induced migration and demonstrate for the first time the synergism between midkine and platelet-derived growth factor in cell migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据