4.6 Article

Miniband formation in a quantum dot crystal

期刊

JOURNAL OF APPLIED PHYSICS
卷 89, 期 10, 页码 5509-5515

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1366662

关键词

-

向作者/读者索取更多资源

We analyze the carrier energy band structure in a three-dimensional regimented array of semiconductor quantum dots using an envelope function approximation. The coupling among quantum dots leads to a splitting of the quantized carrier energy levels of single dots and formation of three-dimensional minibands. By changing the size of quantum dots, interdot distances, barrier height, and regimentation, one can control the electronic band structure of this artificial quantum dot crystal. Results of simulations carried out for simple cubic and tetragonal quantum dot crystal show that the carrier density of states, effective mass tensor and other properties are different from those of bulk and quantum well superlattices. It has also been established that the properties of artificial crystal are more sensitive to the dot regimentation rather then to the dot shape. The proposed engineering of three-dimensional mini bands in quantum dot crystals allows one to fine-tune electronic and optical properties of such nanostructures. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据