4.5 Article

The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS): from quantum control to quantum computing

期刊

CHEMICAL PHYSICS
卷 266, 期 2-3, 页码 323-351

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0301-0104(01)00270-1

关键词

-

向作者/读者索取更多资源

Molecular ro-vibronic coherences, joint energy-time distributions of quantum amplitudes, are selectively prepared, manipulated, and imaged in time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS) measurements using femtosecond laser pulses. The studies are implemented in iodine vapor, with its thermally occupied statistical re-vibrational density serving as initial state. The evolution of the massive ro-vibronic superpositions, consisting of 10(3) eigenstates, is followed through two-dimensional images. The first- and second-order coherences are captured using time-integrated frequency-resolved CARS, while the third-order coherence is captured using time-gated frequency-resolved CARS. The Fourier filtering provided by time-integrated detection projects out single ro-vibronic transitions, while time-gated detection allows the projection of arbitrary ro-vibronic superpositions from the coherent third-order polarization. A detailed analysis of the data is provided to highlight the salient features of this four-wave mixing process. The richly patterned images of the re-vibrational coherences can be understood in terms of phase evolution in rotation-vibration-electronic Hilbert space, using time-circuit diagrams. Beside the control and imaging of chemistry, the controlled manipulation of massive quantum coherences suggests the possibility of quantum computing. We argue that the universal logic gates necessary for arbitrary quantum computing - all single qubit operations and the two-qubit controlled-NOT (CNOT) gate - are available in time-resolved four-wave mixing in a molecule. The molecular rotational manifold is naturally wired for carrying out all single qubit operations efficiently, and in parallel. We identify vibronic coherences as one example of a naturally available two-qubit CNOT gate, wherein the vibrational qubit controls the switching of the targeted electronic qubit. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据