4.5 Article

Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis

期刊

BIOCHEMICAL JOURNAL
卷 420, 期 -, 页码 93-103

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20082117

关键词

callose synthase; cellulose synthase; cell wall biosynthesis; detergent-resistant membrane (DRM); hybrid aspen; lipid raft

资金

  1. MRS
  2. European Union [OLK5-CT-2001-00443]
  3. Swedish Centre for Biomimetic Fibre Engineering

向作者/读者索取更多资源

Detergent-resistant plasma membrane microdomains [DRMs (detergent-resistant membranes)] were isolated recently from several plant species. As for animal cells, a large range of cellular functions, such as signal transduction, endocytosis and protein trafficking, have been attributed to plant lipid rafts and DRMs. The data available are essentially based on protcomics and more approaches need to be undertaken to elucidate the precise function of individual populations of DRMs in plants. We report here the first isolation of DRMs from purified plasma membranes of a tree species, the hybrid aspen Populus tremula x tremuloides, and their biochemical characterization. Plasma membranes were solubilized with Triton X-100 and the resulting DRMs were isolated by flotation in sucrose density gradients. The DRMs were enriched in sterols, sphingolipids and glycosylphosphatidylinositol-anchored proteins and thus exhibited similar properties to DRMs from other species. However, they contained key carbohydrate synthases involved in cell wall polysaccharide biosynthesis, namely callose [(1 -> 3)-beta-D-glucan] and cellulose synthases. The association of these enzymes with DRMs was demonstrated using specific glucan synthase assays and antibodies, as well as biochemical and chemical approaches for the characterization of the polysaccharides synthesized in vitro by the isolated DRMs. More than 70% of the total glucan synthase activities present in the original plasma membranes was associated with the DRM fraction. In addition to shedding light on the lipid environment of callose and cellulose synthases, our results demonstrate the involvement of DRMs in the biosynthesis of important cell wall polysaccharides. This novel concept suggests a function of plant membrane microdomains in cell growth and morphogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据