4.6 Article

Budding yeast GCN1 binds the GI domain to activate the eIF2α kinase GCN2

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 20, 页码 17591-17596

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M011793200

关键词

-

向作者/读者索取更多资源

When starved for a single amino acid, the budding yeast Saccharomyces cerevisiae activates the eukaryotic initiation factor 2 alpha (eIF2 alpha) kinase GCN2 in a GCN1-dependent manner. Phosphorylated eIF2 alpha inhibits general translation but selectively derepresses the synthesis of the transcription factor GCN4, which leads to coordinated induction of genes involved in biosynthesis of various amino acids, a phenomenon called general control response. We recently demonstrated that this response requires binding of GCN1 to the GI domain occurring at the N terminus of GCN2 (Kubota, H,, Sakaki, Y., and Ito, T. (2000) J. Biol. Chem. 275, 20243-20246), Here we provide the first evidence for the involvement of GCN1-GCN2 interaction in activation of GCN2 per se. We identified a C-terminal segment of GCN1 sufficient to bind the GI domain and used a novel dual bait two-hybrid method to identify mutations rendering GCN1 incapable of interacting with GCN2, The yeast bearing such an allele, gcn1-F2291L, fails to display derepression of GCN4 translation and hence general control response, as does a GI domain mutant, gcn2-Y74A,, defective in association with GCN1. Furthermore, we demonstrated that phosphorylation of eIF2 alpha is impaired in both mutants. Since GCN2 is the sole eIF2 alpha kinase in yeast, these findings indicate a critical role of GCN1-GCN2 interaction in activation of the kinase in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据