4.8 Article

A hydrogen storage mechanism in single-walled carbon nanotubes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 123, 期 21, 页码 5059-5063

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja003751+

关键词

-

向作者/读者索取更多资源

We have carried out systematic calculations for hydrogen-adsorption and -storage mechanism in carbon nanotubes at zero temperature. Hydrogen atoms first adsorb on the tube wall in an arch-type and zigzag-type up to a coverage of theta = 1.0 and are stored in the capillary as a form of H-2 molecule at higher coverages. Hydrogen atoms can be stored dominantly through the tube wall by breaking the C-C midbond, while preserving the wall stability of a nanotube after complete hydrogen insertion, rather than by the capillarity effect through the ends of nanotubes. In the hydrogen-extraction processes, H-2 molecule in the capillary of nanotubes first dissociates and adsorbs onto the inner wall and is further extracted to the outer wall by the flip-out mechanism. Our calculations describe suitably an electrochemical storage process of hydrogen, which is applicable for the secondary hydrogen battery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据