4.1 Article

The role of recombinant human erythropoietin in lipid peroxidation and platelet-activating factor generation in a rat model of necrotizing enterocolitis

期刊

EUROPEAN JOURNAL OF PEDIATRIC SURGERY
卷 11, 期 3, 页码 167-172

出版社

GEORG THIEME VERLAG KG
DOI: 10.1055/s-2001-15485

关键词

antioxidant; erythropoietin; lipid peroxidation; necrotizing enterocolitis; platelet-activating factor

向作者/读者索取更多资源

In the present study we examined the effect of recombinant human erythropoietin (rhEPO) on intestinal malondialdehyde (MDA) as an index of lipid peroxidation, related to iron-catalysed free radical reaction and platelet-activating factor (PAF) synthesis in the experimental model of necrotizing enterocolitis (NEC). Three groups, each consisting of eight 1-day-old Wistar albino rat pups, were studied; Group 1, hypoxia-reoxygenation; Group 2, hypoxia-reoxygenation and rhEPO pretreatment; Group 3, control. rhEPO was given 750 U/kg/week by intraperitoneal injection three times a week for 2 weeks. On day 15th of life, hypoxia was induced by placing rat pups in a 100% CO2 chamber for 5 min. After hypoxia, the rat pups were reoxygenated for 10 min with 100% oxygen and returned to their mothers. All pups were killed at 4h following hypoxia-reoxygenation. The abdomen was opened and representative samples of injured areas were taken for histopathologic examination. MDA and PAF levels were determined in the intestine. Significantly increased intestinal MDA content was found in Group 1 rat pups compared to Group 2 and Group 3 pups (p < 0.001 and p < 0.001, respectively). However, PAF concentrations were highly elevated in the intestine of Group 1 and Group 2 pups (p > 0.05) when compared to the intestine of Group 3 pups (p < 0.001 and p < 0.001, respectively). Histopathologic findings did not differ between Groups 1 and 2. The present study demonstrates that oxygen-derived free radicals and PAF are involved in the pathophysiological mechanism of the development of NEC. This study also shows that administration of rhEPO significantly decreases lipid peroxidation; however, PAF generation was not inhibited in hypoxia-induced bowel necrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据