4.6 Article

Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance

期刊

BIOCHEMICAL ENGINEERING JOURNAL
卷 85, 期 -, 页码 21-29

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bej.2014.01.010

关键词

Syngas fermentation; Lignocellulosic biomass; Mass transfer; Hollow fiber membrane biofilm reactor; Ethanol

资金

  1. NSF Iowa ESPCoR
  2. Iowa Energy Center [11-02]
  3. Iowa State University Bailey Award

向作者/读者索取更多资源

Gasification followed by syngas fermentation is a unique hybrid process for converting lignocellulosic biomass into fuels and chemicals. Current syngas fermentation faces several challenges with low gas-liquid mass transfer being one of the major bottlenecks. The aim of this work is to evaluate the performance of hollow fiber membrane biofilm reactor (HFM-BR) as a reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (K(L)a) of the HFM-BR was determined at abiotic conditions within a wide range of gas velocity/flowrate passing through the hollow fiber lumen and liquid velocity/flowrate passing through the membrane module shell. The K(L)a values of the HFM-BR were higher than most reactor configurations such as stir tank reactors and bubble columns. A continuous syngas fermentation of Clostridium carboxidivorans P7 was implemented in the HFM-BR system at different operational conditions, including the syngas flow rate, liquid recirculation between the module and reservoir, and the dilution rate. It was found that the syngas fermentation performance such as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid depended not only on the mass transfer efficiency but also the characteristics of biofilm attached on the membrane module (biofouling or abrading of the biofilm). The HFM-BR results in a highest ethanol concentration of 23.93 g/L with an ethanol to acetic acid ratio of 4.79. Collectively, the research shows the HFM-BR is an efficient reactor system for syngas fermentation with high mass transfer. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据