4.6 Article

Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications

期刊

BIOCHEMICAL ENGINEERING JOURNAL
卷 90, 期 -, 页码 79-89

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bej.2014.05.016

关键词

Antibiotics; Biomedical; Biokinetics; Microcarriers; Drug delivery; Biomaterial

向作者/读者索取更多资源

A novel pH-sensitive and water-soluble polyvinyl alcohol (PVA)-cellulose acetate phthalate (CAP) composite-based biomaterial was prepared, in which the multi-scale web of copper (Cu)-grown carbon micro-nanofibers (Cu-ACF/CNFs) was in situ dispersed during a synthesis stage. PVA-CAP and Cu-nanoparticles (NPs) were used as an encapsulating agent and nano-antibiotics, respectively. The web of Cu-ACF/CNF was prepared by growing CNFs on the activated carbon microfiber (ACF) substrate by chemical vapor deposition using Cu NPs as the catalyst. The novel step of the synthesis included esterification of polyvinyl acetate (PVAc) to produce a PVA gel to which the ball-milled Cu-ACF/CNF was blended at the incipience of the gel formation to produce the PVA-CAP-Cu-ACF/CNF metal-carbon-polymeric composite film. The in vitro dissolution tests revealed that the encapsulating polymeric composite was dispersible in water and its rate of dissolution was high at pH > 6.5. The antibacterial tests performed on the material demonstrated its effectiveness against both gram negative Escherichia coli and gram positive Staphylococcus aureus bacterial strains. The Hixson-Crowell kinetic model described the dissolution profiles of the material. The method of preparation is novel, simple, and environmentally friendly. The prepared biomaterial may be used in several biomedical applications, including wound healing and the controlled release of drugs in the antibiotic delivery system. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据