4.7 Article

Reynolds number effects in the near-wall region of turbulent channel flows

期刊

PHYSICS OF FLUIDS
卷 13, 期 6, 页码 1755-1767

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1367369

关键词

-

向作者/读者索取更多资源

The continuity and momentum equations do not imply a Reynolds number dependence of turbulence data when wall variables are used for normalization. However, experimental and numerical results show a Reynolds number dependence of turbulence intensity very close to the wall. The cause of this is explained. It results from the behavior of a sink term in the dissipation rate equation which shows a Reynolds number dependence in the limit of two-component two-dimensional turbulence as it exists close to walls. Away from the near-wall region the Reynolds number dependence originates from the streamwise pressure gradient which enters into the equations for the turbulent kinetic energy and turbulent dissipation rate through the gradient production processes. The low-Reynolds number effects in turbulent channel flow were investigated experimentally using the laser Doppler anemometry (LDA) measuring technique. A new method was used to eliminate the influence of the limited spatial resolution of the LDA measuring control volume. Results are presented for the limiting behavior of the turbulent intensity near the wall and its variation with the Reynolds number. The present LDA measurements confirm the trend in the data of direct numerical simulations. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据