4.6 Article

1,1,2,2-Tetrachloroethane aerobic cometabolic biodegradation in slurry and soil-free bioreactors: A kinetic study

期刊

BIOCHEMICAL ENGINEERING JOURNAL
卷 52, 期 1, 页码 55-64

出版社

ELSEVIER
DOI: 10.1016/j.bej.2010.07.004

关键词

Aerobic cometabolism; Tetrachloroethane; Bioremediation; Bioreactor; Kinetic model

资金

  1. Italian Ministry of University and Research (MIUR)

向作者/读者索取更多资源

In this work the aerobic cometabolic biodegradation of 1,1,2,2-tetrachloroethane (TeCA) by propane-utilizing bacteria was studied in slurry bioreactors containing soil and groundwater from 5 aquifers as well as in soil-free bioreactors. The main goals were: (a) to identify and calibrate a kinetic model of TeCA cometabolism; (b) to select and characterize a TeCA-degrading bacterial consortium; (c) to compare the results obtained in slurry and in soil-free bioreactors. The results showed that 4 of the 5 tested aquifers contain TeCA-degrading bacteria, indicating that aerobic cometabolism is a potentially effective approach for TeCA-contaminated aquifers. In bioaugmentation tests, a TeCA-cometabolizing consortium developed in the slurry bioreactors induced a strong reduction of the lag-time for the onset of TeCA cometabolism. The soil-free tests yielded a satisfactory TeCA degradation performance, indicating that on-site soil-free bioreactors represent an interesting technical solution for the aerobic cometabolic bioremediation of CAN-contaminated groundwaters. The mineralization of the organic Cl was equal to about 97%. The prolonged TeCA biodegradation determined a progressive selection of the bacterial strains more effective in TeCA degradation and less affected by degradation product toxicity. The tested Michaelis-Menten-based kinetic model proved an effective tool to interpret the experimental data of TeCA aerobic cometabolism. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据