4.8 Article

Induction of ApL3 expression by trehalose complements the starch-deficient Arabidopsis mutant adg2-1 lacking ApL1, the large subunit of ADP-glucose pyrophosphorylase

期刊

PLANT PHYSIOLOGY
卷 126, 期 2, 页码 883-889

出版社

AMER SOC PLANT PHYSIOLOGISTS
DOI: 10.1104/pp.126.2.883

关键词

-

向作者/读者索取更多资源

The disaccharide trehalose has strong effects on plant metabolism and development. In Arabidopsis seedlings, growth on trehalose-containing medium leads to an inhibition of root elongation, an accumulation of starch in the shoots, an increased activity of ADP-Glc pyrophosphorylase (AGPase), and an induction of the expression of the AGPase gene, ApL3 (A. Wingler, T. Fritzius, A. Wiemken, T. Boiler, R.A. Aeschbacher [2000] Plant Physiol 124: 105-114). We used Arabidopsis mutants deficient in starch synthesis to examine whether the primary effect of trehalose was to affect carbohydrate allocation by the induction of AGPase in the photosynthetic tissue. In a mutant lacking the large AGPase subunit, ApL1, (aclg2-1 mutant) growth on trehalose restored AGPase activity and led to a strong accumulation of starch in the shoots. In contrast, starch synthesis could not be induced in a mutant lacking the small AGPase subunit, ApS, (adg1-1 mutant) or in a mutant lacking plastidic phosphoglucomutase (pgm1-1 mutant). These results indicate that ApL3 can substitute for ApL1 in the AGPase complex. In addition, root elongation in the mutants, especially in the adg1-1 mutant, was partially resistant to trehalose, suggesting that the induction of ApL3 expression and the resulting accumulation of starch in the shoots were partially responsible for the effects of trehalose on the growth of wild-type plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据