4.6 Article

Impact of transesterification mechanisms on the kinetic modeling of biodiesel production by immobilized lipase

期刊

BIOCHEMICAL ENGINEERING JOURNAL
卷 42, 期 3, 页码 261-269

出版社

ELSEVIER
DOI: 10.1016/j.bej.2008.07.006

关键词

Fatty acid ethyl ester; Immobilized lipase; Kinetic; Modeling; Palm oil; Transesterification

资金

  1. Thai Research Fund [MRG4980088]

向作者/读者索取更多资源

Three kinetic models of the transesterification of palm oil fatty acids to ethanol using an immobilized lipase were developed. The models differ from one another with respect to the rate-limiting step and the point at which the ethanol molecule becomes involved in the reaction. The kinetic parameters were estimated by fitting experimental data of the transesterification of palm oil with various ethanol concentrations. The models are able to account for the effects of substrates and products involved in the transesterification throughout the entire reaction. There was a good agreement between experimental results and those predicted by the proposed model equations in which ethanol was assumed to be involved directly in an alcoholysis reaction with palm oil. Furthermore, the calculated results show that the rate constants for alcoholysis of palm oil with ethanol are much higher than those for the hydrolysis reaction. From the proposed model equations, the effects of ethanol concentration on the initial production rates and yields of fatty acid ethyl ester and free fatty acids were simulated. The simulation results show that increasing the initial ethanol concentration produces an increase in the initial production rate and yield of fatty acid ethyl ester and lowers the final concentration of free fatty acid whereas lower ethanol concentration led to a higher final concentration of free fatty acid. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据