4.6 Article

14-3-3 Proteins Restrain the Exo1 Nuclease to Prevent Overresection

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 290, 期 19, 页码 12300-12312

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.644005

关键词

14-3-3 protein; checkpoint control; DNA damage response; DNA repair; proliferating cell nuclear antigen (PCNA); DNA resection; Exo1

资金

  1. National Institutes of Health [R01GM098535, P01CA92584]
  2. American Cancer Society [RSG-13-212-01-DMC]
  3. Washington University

向作者/读者索取更多资源

Background: Proper regulation of DSB resection is key to genome maintenance. Results: 14-3-3s bind to Exo1 and restrain its damage association and resection activity by counteracting the function of PCNA. Conclusion: Exo1 activity is controlled by both positive and negative regulators to ensure a proper level of DNA end resection. Significance: Our data reveal a key mechanism that controls the DNA end resection process. The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据