4.4 Article

Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow

期刊

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1358844

关键词

-

向作者/读者索取更多资源

Direct numerical solution for flow and heat transfer past a sphere in a uniform flow is obtained ruing an accurate and efficient Fourier-Chebyshev spectral collocation method for Reynolds numbers lip to 500. We investigate the flow and temperature fields over a range of Reynolds numbers, showing steady and axisymmetric flow when the Reynolds number is less than 210, steady and nonaxisymmetric flow without vortex shedding when the Reynolds number is between 210 and 270, and unsteady three-dimensional flow with vortex shedding when the Reynolds number is above 270. Results from three-dimensional simulation are compared with the corresponding axisymmetric simulations for Re > 210 in order to see the effect of unsteadiness and three-dimensionality on heat transfer past a sphere. The local Nusselt number distribution obtained from the 3D simulation shows big differences in the wake region compared with axisymmetric one, when there exists strong vortex shedding in the wake. But the differences in surface-average Nusselt number between axisymmetric and three-dimensional simulations are small owing to the smaller surface area associated with the base region. The shedding process is observed to be dominantly one-sided and as a result axisymmetry of the surface hear transfer is broken even after a time-average. The one-sided shedding also results in a time-averaged mean lift force on the sphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据