4.5 Article

Understanding the kinetics and network formation of dimethacrylate dental resins

期刊

POLYMERS FOR ADVANCED TECHNOLOGIES
卷 12, 期 6, 页码 335-345

出版社

WILEY
DOI: 10.1002/pat.115

关键词

electron paramagnetic resonance (EPR); spectroscopy; material properties; modeling; near-FTIR spectroscopy; photopolymerization

向作者/读者索取更多资源

Dimethacrylate monomers are commonly used as the organic phase of dental restorative materials but many questions remain about the underlying kinetics and network formation in these highly crosslinked photopolymer systems. Several novel experimental and modeling techniques that have been developed for other multifunctional (meth)acrylates were utilized to gain further insight into these resin systems. Specifically this work investigates the copolymerization behavior of bis- GMA (2, 2-bis [p-(2-hydroxy-3 -methacryloxyprop-loxy)-phenyl]propane)and TEGDMA (triethylene glycol dimethacrylate), two monomers typically used for dental resin formulations. Near-infrared spectroscopy, electron paramagnetic resonance spectroscopy, as well as dynamic mechanical and dielectric analysis were used to characterize the kinetics, radical populations, and structural properties of this copolymer system. In addition, a kinetic model is described that provides valuable information about the network evolution during the formation of this crosslinked polymer. The results of these numerous studies illustrate that all of the aforementioned techniques can be readily applied to dental resin systems and consequently can be used to obtain a wealth of information about these systems. The application of these techniques provides insight into the complex polymerization kinetics and corresponding network formation, and as a result, a more complete understanding of the anomolous behaviors exhibited by these systems, such as diffusion controlled kinetics and conversion dependent network formation, is attained. Copyright (C) 2001 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据