4.6 Article

Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16INK4a

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2014.08.123

关键词

Reactive oxygen species; Normal human epidermal keratinocyte; Cyclin-dependent kinase inhibitors; Cellar senescence

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [24592823, 23390468]
  2. Strategic Study Base Formation Support Business [S1001059]
  3. Grants-in-Aid for Scientific Research [24592823, 23390468] Funding Source: KAKEN

向作者/读者索取更多资源

Reactive oxygen species (ROS) can cause severe damage to DNA, proteins and lipids in normal cells, contributing to carcinogenesis and various pathological conditions. While cellular senescence arrests the early phase of cell cycle without any detectable telomere loss or dysfunction. ROS is reported to contribute to induction of cellular senescence, as evidence by its premature onset upon treatment with antioxidants or inhibitors of cellular oxidant scavengers. Although cellular senescence is known to be implicated in tumor suppression, it remains unknown whether ROS initially contributed to be cellular senescence in normal human epidermal keratinocytes (NHEK) and their malignant counterparts. To clarify whether ROS induce cellular senescence in NHEKs, we examined the effect of hydrogen peroxide (H2O2) on the expression of cellular senescence-associated molecules in NHEKs, compared to in squamous carcinoma cells (SCCs). Hydrogen peroxide increased the number of cells positive in senescence associated-beta-galactosidase (SA-beta-Gal) activity in NHEKs, but not SCCs. The expression of cyclindependent kinase (CDK) inhibitors, especially p16(INK4a) was upregulated in NHEKs treated with H2O2. Interestingly, H2O2 suppressed the methylation of p16(INK4a), promoter region in NHEKs, but not in SCCs. Hydrogen peroxide also suppressed the expression of phosphorylated Rb and CDK4, resulting in arrest in G0/G1 phase in NHEKs, but not SCCs. Our results indicate that the ROS-induced cellular senescence in NHEKs was caused by the upregulation p16(INK4a) through demethylation in its promoter region, which is not detected in SCCs, suggesting that ROS-induced cellular senescence contributes to tumor suppression of NHEKs. (C) 2014 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据