4.6 Article

Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2013.08.087

关键词

Chaperone; CREC family proteins; Sarcoplasmic reticulum; Apoptosis

资金

  1. Korea MEST NRF [2013046213]
  2. GIST Systems Biology Infrastructure Establishment Grant
  3. Ministry of Science, ICT & Future Planning, Republic of Korea [GIST-14] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  4. National Research Foundation of Korea [2013M3A9A7046297] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress (ERS), and triggers the unfolded protein response (UPR) that consequently reduces accumulation of unfolded proteins by increasing the quantity of ER chaperones. Calumenin, a Ca2+-binding protein with multiple EF hand motifs, which is located in the ER/SR, is highly expressed during the early developmental stage of the heart, similar to other ER-resident chaperones. The aim of this study was to investigate the functional role of calumenin during ERS in the heart. Like other chaperones (e.g., GRP94 and GRP78), calumenin expression was highly upregulated during ERS induced by 10 mu g/ml tunicamycin, but attenuated in the presence of 500 mu M PBA, the chemical chaperone in neonatal rat ventricular cardiomyocytes (NRVCs). Upon 7.5-fold overexpression of calumenin using a recombinant adenovirus system, the expression levels of ERS markers (GRP78, p-PERK, and p-elF2 alpha) and ER-initiated apoptosis markers (CHOP and p-JNK) were reduced, whereas the survival protein BCL-2 was upregulated during ERS compared to the control. Evaluation of cell viability by TUNEL assay showed that apoptosis was also significantly reduced by calumenin overexpression in ERS-induced cells. Taken together, our results suggest that calumenin plays an essential role in the alleviation of ERS in neonatal rat cardiomyocytes. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据