4.6 Article

Early VEGFR2 activation in response to flow is VEGF-dependent and mediated by MMP activity

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2013.03.134

关键词

Shear stress; VEGF; VEGFR2; Matrix metalloproteinase

资金

  1. National Institutes of Health MERIT Award [5R37HL040696-26, 3R37HL040696-26S1]

向作者/读者索取更多资源

Although several potential mechanosensors/mechanotransducers have been proposed, the precise mechanisms by which ECs sense and respond to mechanical forces and translate them into biochemical signals remains unclear. Here, we report that two major ligand-dependent tyrosine autophosphorylation sites of VEGFR2, Y1175 and Y1214, are rapidly activated by shear stress in human coronary artery endothelial cells (HCAECs). Neutralizing antibody against VEGFR2 not only abrogates flow-induced phosphorylation of these tyrosine residues, but also has a marked inhibitory effect on downstream eNOS activation. In situ proximity ligation assay revealed that VEGF and VEGFR2 are closely associated in HCAECs, and more importantly, this association is increased with flow. Finally, we show that flow-induced VEGFR2 activation is attenuated in the presence of the broad spectrum matrix metalloproteinase (MMP) inhibitor, GM6001. Taken together, our results suggest that a ligand-dependent mechanism involving the activity of MMPs plays a key role in the early, shear stress-induced activation of VEGFR2. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据