4.2 Article

Diamagnetically stabilized magnet levitation

期刊

AMERICAN JOURNAL OF PHYSICS
卷 69, 期 6, 页码 702-713

出版社

AMER INST PHYSICS
DOI: 10.1119/1.1375157

关键词

-

向作者/读者索取更多资源

Stable levitation of one magnet by another with no energy input is usually prohibited by Earnshaw's theorem. However, the introduction of diamagnetic material at special locations can stabilize such levitation. A magnet can even be stably suspended between (diamagnetic) fingertips. A very simple, surprisingly stable room temperature magnet levitation device is described that works without superconductors and requires absolutely no energy input. Our theory derives the magnetic field conditions necessary for stable levitation in these cases and predicts experimental measurements of the forces remarkably well. New levitation configurations are described which can be stabilized with hollow cylinders of diamagnetic material. Measurements are presented of the diamagnetic properties of several samples of bismuth and graphite. (C) 2001 American Association of Physics Teachers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据