4.4 Article

Trace element partitioning between silicate perovskites and ultracalcic melt

期刊

PHYSICS OF THE EARTH AND PLANETARY INTERIORS
卷 124, 期 1-2, 页码 25-32

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0031-9201(00)00221-1

关键词

perovskite; magma; lower mantle; partition coefficient; trace element

向作者/读者索取更多资源

Determination of partition coefficients for Mg- and Ca-perovskite/melt has been performed for 27 trace elements by combination of high pressure-temperature experiments using a multi-anvil apparatus and in situ trace element analysis by secondary ion mass spectrometry (SIMS). Each of the crystallographic sites for the perovskites gives rise to a parabola-shaped peak on the partition coefficient versus ionic radius diagram. This suggests that the elemental partitioning is governed by the structural control even under the lower mantle condition. On the diagrams for Mg- and Ca-perovskites, sharpness and peak position of peaks are consistent with geometrical flexibility of the corresponding coordination polyhedra. The relative height between the partition curves for homovalent ions is controlled by electrostatic charge balancing among their crystallographic sites. Large partition coefficients of Th and U in Ca-perovskite suggest that these elements play an important role for the heat source in the Earth's lower mantle. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据