4.6 Article

Spin-dependent thermal and electrical transport in a spin-valve system

期刊

PHYSICAL REVIEW B
卷 63, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.63.224419

关键词

-

向作者/读者索取更多资源

Within the framework of Buttiker's gauge invariant and charge conservation de transport theory, the spin-dependent thermal and electrical transport in a ferromagnet-insulator-ferromagnet tunnel junction is investigated at finite bias voltage and finite temperature. It is observed that the relative orientations of magnetizations in the two ferromagnetic (FM) electrodes as well as temperature have remarkable effects on the differential conductance, thermopower, Peltier effect, and thermal conductivity. Ar low temperature the quantum resonant tunneling is predominant, leading to the deviation of classical transport theory, while the transport of electrons are crucially governed by thermal processes at high temperature. The so-called spin-valve phenomenon is clearly uncovered for both the differential conductance and the thermal conductivity at low temperature. The Wiedemann-Franz law is examined, and the inelastic tunneling spectroscopy is also discussed. Our findings are expected to be measured in the near future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据