4.6 Article

Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 291, 期 8, 页码 3860-3870

出版社

ELSEVIER
DOI: 10.1074/jbc.M115.680801

关键词

crystallography; malaria; oxidative stress; plasmodium; small ubiquitin-like modifier (SUMO); ubiquitin-conjugating enzyme (E2 enzyme); ubiquitin fold domain (Ufd)

资金

  1. National Institutes of Health [GM060980]
  2. Sommer Scholar's Program
  3. Bloomberg Family Foundation
  4. National Institutes of Health Chemistry-Biology Interface Training Grant [T32GM080189]
  5. Johns Hopkins Malaria Research Institute

向作者/读者索取更多资源

Protein modification by small ubiquitin-related modifiers (SUMOs) is essential and conserved in the malaria parasite, Plasmodium falciparum. We have previously shown that interactions between the SUMO E1-activating and E2-conjugating enzyme in P. falciparum are distinct compared with human, suggesting a potential target for development of parasite-specific inhibitors of SUMOylation. The parasite asexual trophozoite stage is susceptible to iron-induced oxidative stress and is subsequently a target for many of the current anti-malarial drugs. Here, we provide evidence that SUMOylation plays a role in the parasite response to oxidative stress during red blood cell stages, indicative of a protective role seen in other organisms. Using x-ray crystallography, we solved the structure of the human SUMO E1 ubiquitin fold domain in complex with the E2, Ubc9. The interface defined in this structure guided in silico modeling, mutagenesis, and in vitro biochemical studies of the P. falciparum SUMO E1 and E2 enzymes, resulting in the identification of surface residues that explain species-specific interactions. Our findings suggest that parasite-specific inhibitors of SUMOylation could be developed and used in combination therapies with drugs that induce oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据