4.7 Article

Proton transport in polarizable water

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 114, 期 22, 页码 10039-10048

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1370393

关键词

-

向作者/读者索取更多资源

Proton mobility in water determines the conductive properties of water-based proton conductors. We address the problem of proton mobility in pure water using a new, simple, Newtonian molecular dynamics water model which is applicable to proton-rich environments (e.g., polymer electrolyte membranes). This model has degrees of freedom that are inertial and inertialess relative to the proton. The solvated proton is treated using a local empirical valence bond Hamiltonian, which allows for the efficient simulation of full charge, energy-conserving dynamics in single and multiple-proton systems. The solvated proton displays the Grotthus-type proton transfer mechanism, giving significantly enhanced transport in comparison with the classical diffusion of an H3O+ ion. The model yields an activation energy of 0.11 eV, in excellent agreement with experiment. The results are consistent with the observation that nonpolarizable water models, conditioned to reproduce correct values of the static dielectric constant, are predestined to give too large activation energies of proton mobility due to the overweighted spectrum of the slower nuclear modes. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据